Characterization of silicon nitride single crystals and pOlycrystalline reaction sintered silicon nitride by microhardness measurements

D. CHAKRABORTY, J. MUKERJI *Central Glass and Ceramic Research Institute, Calcutta 700 032, India*

Identification of α - and β -phases of Si_3N_4 single crystals grown from Si melt could be made with the help of Vickers microhardness measurements. The effect of chemical additives, e.g. metallic Fe and BaF₂, on the microhardness of Si_3N_4 was also determined. Different constants involved in the empirical Meyer relationship between load and indentation diameters could be correlated with the porosity and microhardness of $Si₃N₄$ single crystals and polycrystalline, reaction sintered Si₃N₄.

1. **Introduction**

For a long time microhardness measurements have been frequently utilized to characterize silicon nitride $[1-4]$. Parr *et al.* $[1]$ investigated the effect of nitridation of silicon at various temperatures and characterized the resulting silicon nitride by microhardness measurements. Pratt [2] reported that the α - and β -phases of reaction sintered silicon nitride can also be distinguished by their microhardness properties, and in fact, α -Si₃N₄ was found to be harder than β -Si₃N₄ in the polycrystalline matte. But Noakes and Pratt [4] later reported that both the α - and β -phases of polycrystalline Si_3N_4 have identical Vickers microhardness values. Coe *et al.* [5] reported that an inverse relationship exists between hardness and strength of hot-pressed $Si₃N₄$. They further reported that an inverse relationship also exists between hardness and grain size of $Si₃N₄$. Niihara and Hirai [6] studied the microhardness anisotropy in different crystallographic faces of α -Si₃N₄ single crystals grown by the chemical vapour deposition (CVD) method. Hardness and wear behaviour of Si_3N_4 ceramics, with special reference to surface deformation behaviour, have been studied by Page *etal.* [7].

In the present paper an attempt has been made to identify α - and β -phases of Si₃N₄ single crystals grown from melt with the help of Vickers microhardness measurements. In addition, an attempt has been made to correlate the constants involved in the empirical relationship between load and indentation diameter with the porosity and microhardness of $Si₃N₄$ single crystals and polycrystalline $Si₃N₄$. The empirical relationship was first described by Meyer [8].

2. Experimental procedure

2.1. Preparation of $Si₃N₄$

 β -Si₃N₄ single crystals (of size \sim 60 μ m || *c*-axis and $\sim 30 \,\mu\text{m} \perp c$ -axis) were grown at 1450°C from silicon melt (of purity 99.99%) and specially pure nitrogen, with or without 0.1 wt% and 1.0 wt % Fe. Details of the experimental procedures have been reported elsewhere [9]. α -Si₃N₄ single crystals could be grown along with β -Si₃N₄ single crystals provided that the silicon melt contained **1.0 wt %** Fe.

Polycrystalline α -Si₃N₄ was made by nitriding commercial silicon (particle size \leq 200 mesh) at 1350°C, while $\alpha + \beta$ -Si₃N₄ were made together by nitriding silicon first at 1350° C and then at 1450 $^{\circ}$ C [10, 11]. Prior to nitriding the silicon bars were pressed either uniaxially $[2 \text{ tsi } (3.09 \times$ 10^7 N m^{-2} or 8 tsi $(1.24 \times 10^8 \text{ N m}^{-2})$ or isostatically $[16 \text{ tsi } (2.47 \times 10^8 \text{ N m}^{-2})]$. Most of the

polycrystalline $Si₃N₄$ samples were fully converted during the nitriding process but only a few had unconverted silicon in Si_3N_4 . The α - and β -phases of $Si₃N₄$ were identified by X-ray analysis.

2.2. Measurement of microhardness

Small samples of $Si₃N₄$ were mounted in resin, ground and finally polished with diamond paste. The Vickers microhardness was measured with a Leitz Miniload Hardness Tester. Care was taken to make indentation only on that region of polycrystalline $Si₃N₄$ which had minimum number of visible pores. For the $Si₃N₄$ having unconverted silicon, indentation was made on a region free from unconverted silicon.

Microhardness measurements in order to identify the microhardness anisotropy could not be made on individual crystallographic faces because of the small sizes of single crystals. Therefore, the reported microhardness values should be considered as the average of values for different crystallographic faces.

2.3. Determination of porosity

The porosity of polycrystalline $Si₃N₄$ was measured using an Hg-porosimeter. The porosity of single crystals was assumed to be zero.

3. Results and discussion

Table I lists sample nature, indentation diameter and Vickers microhardness at loads of 100g, 200 g, 300 g and 500 g, for α - and β -Si₃N₄ single crystals with or without Fe-additive, and α - and $\alpha + \beta$ -polycrystalline Si₃N₄ with or without BaF₂additive. $Si₃N₄$ single crystals, polycrystalline $Si₃N₄$ and $Si₃N₄$ having unconverted silicon have been designated by SC, PC and UN respectively. The porosities of samples were found to be **as** follows: Samples $1-6$, 0%; Samples $7-9$, 12%; Sample 10, 18.5%; Samples 11-15, 25%; Samples 16-17, 27%. Each indentation diameter is the average of 15 observations. Standard deviation in per cent for indentation diameters have been indicated in parenthesis. The ratio of minimum to maximum loads, used for making the indentations, was kept at 1:5 following the suggestion of Dunegan [3] that it should be kept within 1:10. Loads lesser than 100 g were not used to avoid error in measurement due to the smallness of the resulting indentation diameter. Loads larger than 500g were not used to avoid cracking around indentation. Table I shows that the Vickers microhardness (VMH) decreases with increasing load for $Si₃N₄$ single crystals and polycrystalline $Si₃N₄$ as expected for hard and brittle ceramic materials [3,4].

3.1. Identification of α - and β -Si₃N₄ **single** crystals

The α - and β -phases of Si_3N_4 have a light grey and deep grey colour respectively [3], and consequently the two phases could be distinguished and the indentation could be made selectively on either of the two phases of $Si₃N₄$. Samples 1–3 show that α -Si₃N₄ single crystals have a higher VMH than β -Si₃N₄.

Fig. 1 shows a typical α - and β -Si₃N₄ single crystal with an indentation made at 100 g load. It can be easily seen that α -Si₃N₄ has smaller indentation diameter than β -Si₃N₄ indicating that the former is harder than the latter. It may be pointed out that this difference in microhardness cannot be due to differences in crystallographic orientation since both of the single crystals have similar types of orientation, as is evident from Fig. 1. Samples 7 and 10 show that polycrystalline α -Si₃N₄ has a higher VMH than polycrystalline $\alpha + \beta$ -Si₃N₄ indicating that polycrystalline α -Si₃N₄ is harder than polycrystalline β -Si₃N₄. It may be noticed that Sample 10 has higher porosity than Sample 7. Present authors also performed VMH measurements on the α - and β -phases of Si₃N₄ in the two-stage polycrystalline samples, as performed by Pratt [4]. A consistent difference in the VMH for α - and β -phases could not be achieved, however, because of the dissimilar distribution of pores in the α - and β -phases. Because the β -phase is formed from the melt it normally has a lesser number of pores than the α -phase. Hence, perhaps, the

Figure 1 Optical micrograph of α - and β -Si₃N₄ single crystals with Viekers indentation at a load of 100g. Light colour: α -Si₃N₄, deep colour: β -Si₃N₄, (× 280).

n.d.: not determined. n.d.: not determined.
F: BaF₃ .
*Bracketed terms indicate standard deviation in %. *Bracketed terms indicate standard deviation in %.

Figure 2 Relation between the slope of the Meyer line, *n*, and porosity (%) of Si_3N_4 .

increased VMH of α -Si₃N₄ has been accentuated in such samples by the comparatively higher porosity of that phase and, consequently, the VMH of α -Si₃N₄ has been found to be lower than that of β -Si₃N₄. The only value obtainable in the existing literature of the VMH of α -Si₃N₄ single crystals grown by the CVD method is 3343 kg mm^{-2} at load of 100 g, which is the average of the values for the three crystallographic faces [7]. This is somewhat low in comparison with the VMH values obtained in the present work.

It may be mentioned that β -Si₃N₄ has a slightly higher density than α -Si₃N₄ [12]; in spite of this, α -Si₃N₄ has been found to be harder than β -Si₃N₄. This is contrary to the normal behaviour of ceramic materials.

3.2. The effect of chemical additives on the hardness

Samples 2-6 show that β -Si₃N₄ samples grown with no Fe-additive exhibit a higher VMH value than those with an Fe-additive. The reason for choosing an Fe-additive is that it enhances and favours the growth of β -Si₃N₄ [13-15]. Samples 4-6 show that increase in the concentration of the Fe-additive from 0.1 wt% to 1.0 wt% does not further reduce the VMH values.

Samples 7–9 show that the addition of $BaF₂$ improves the VMH values of polycrystalline $Si₃N₄$. $BaF₂$ is added because it enhances the siliconnitrogen reaction [11,16]. Experience in this

laboratory has shown that isostatically pressed silicon bars which were not fully nitrided, even after prolonged heating above 1420° C, could become so if 1 wt % $BaF₂$ was added to the mixture. It was also observed that the percentage of α -phase in BaF_2 -containing polycrystalline Si_3N_4 was higher. Low temperature $(<1420^{\circ}$ C) nitridation product of powdered silicon containing BaF₂ yielded more than 90 wt % of the α -phase. Addition of $BaF₂$ improves the VMH, probably due to an enhanced percentage of the α -phase being present in polycrystalline $Si₃N₄$.

Samples 7-8 and 16-17 show that unconverted silicon present in $Si₃N₄$ does not deteriorate the VHM of $Si₃N₄$.

3.3. Dependence of slope and intercept of Meyer line on porosity and microhardness

The Meyer line is defined by the linear relationship

$$
\log P = n \log d + \log a, \tag{1}
$$

where P is the load, d is the indentation diameter, n is a constant that is the slope of the Meyer line and a is a constant. Meyer lines were drawn for the loads and indentation diameters listed in Table I. Thus *n* and $log a$ could be found out from the slope and intercept of the Meyer line, respectively.

Plotting of the slope of the Meyer line, n , against porosity shows that n linearly decreases with increasing porosity (see Fig. 2). Hence, some estimation of the porosity of $Si₃N₄$ can be made from the slope of the Meyer line. This is an important observation because, until now, the slope of the Meyer line was not known to have any correlation with any physical property of $Si₃N₄$.

Vickers microhardness at a load of 100g, $VMH₁₀₀$, is plotted against porosity in Fig. 3. In spite of the large scatter in VMH_{100} it can be observed that VMH₁₀₀ for $Si₃N₄$ single crystals is higher than that of polycrystalline $Si₃N₄$, as expected. Moreover, VMH_{100} to some extent linearly decreased with porosity. The large scatter in VMH_{100} is due to the difference in VMH for the two phases α and β of Si_3N_4 and to the deterioration of VMH as a result of the influence of the Feadditive (see Section 3.1).

Comparison of Figs 2 and 3 indicates that the scatter in data points in Fig. 2 is less than that in Fig. 3. Hence it can be pointed out that the slope of the Meyer line, n , can give a better indication of porosity of $Si₃N₄$ than the individual VMH

Figure 3 Relation between the Vickers microhardness at a load of $100 g$ (VMH₁₀₀) and porosity (%) of Si_1N_a .

value. This is so because the influence of the nature of the phase of $Si₃N₄$ and of the chemical additive is much more prominent in the VMH values than it is in the slope of the Meyer line.

Fig. 4 shows that slope of Meyer line, n , increases non-linearly with increasing VMH_{100} and, hence, *n* can given an indication of microhardness. A few values of VMH₁₀₀ and corresponding *n* values from the existing literature $[2, 6]$ have been introduced in Fig. 4. These data points from literature fit reasonably well within the present figure.

Fig. 5 depicts the intercept of the Meyer line, $(\log a)$, against VMH₁₀₀. It is observed that $\log a$ increases non-linearly with VMH_{100} and hence some evaluation of the VMH of $Si₃N₄$ can be made from the $\log a$ value.

It is observed from Table I that the standard deviation of the indentation diameters for the polycrystalline $Si₃N₄$ are on average two times larger than those for Si_3N_4 single crystals. This

Figure 4 Relation between the slope of the Meyer line, $n₁$ and the Vickers microhardness at a load of 100 g $(VMH₁₀₀)$.

Figure 5 Relation between the intercept of the Meyer line (log a) and the Vickers microhardness at a load of $100 g$ (VMH₁₀₀).

deafly indicates that the indentation diameters are influenced by the different sizes of pores in polycrystalline $Si₃N₄$.

Acknowledgements

The authors are thankful to Mr K. D. Sharma, Director, Central Glass and Ceramic Research Institute, for his interest in the work. Thanks are due to Mr K. K. Dhargupta and Mr S. K. Biswas for supplying the samples of polycrystalline and single crystal silicon nitride, respectively.

References

- 1. N. L. PARR, G. F. MASTIN and E. R. W. MAY, "Special Ceramics" edited by P. Popper (Haywood and Co. Ltd, London, 1960) p. 102.
- 2. P. L. PRATT, "Mechanical Properties of Engineering Ceramics" edited by W. W. Kriegel and H. Palmour III (Interscience, New York, 1961) p. 507.
- 3. H.C. DUNEGAN, "Mechanical Properties of Engineering Ceramics" edited by W. W. Kriegel and H. Palmour HI (Interscience, New York, 1961) p. 521.
- 4. P. B. NOAKES and P. L. PRATT, "Special Ceramics 5" edited by P. Popper (British Ceramic Research Association, Stoke-on-Trent, 1972) p. 299.
- 5. R. F. COE, R. J. LUMBY and M. F. PAWSON,

"Special Ceramics 5" edited by P. Popper (British Ceramic Research Association, Stoke-on-Trent, 1972) p. 361.

- 6. K. NIIHARA and T. HIRAI,J. *Mater. Sci.* 13 (1978) 2277.
- 7. T.P. PAGE, G. R. SAWYER, O. O. ADEWOYE and *J. J. WERT,Proc. Brit. Ceram. Soc.* 26 (1978) 197.
- 8. F. MEYER, *Z. Vereins Deut. lng.* 52 (1908) 52, 645, 740, 835.
- 9. S.K. BISWAS and J. MUKERJI, *High Temp. High Press.* 12 (1980) 81.
- 10. J. MUKERJI and K. K. DHARGUPTA, Symposium on High Temperature Materials, Hyderabad, February, 1972 (BARC, Trombay, India, 1972) p. 249.
- 11. J. MUKERJI, K. K. DHARGUPTA and S. K. BISWAS, *Indian J. Technology* 16 (1978) 156.
- 12. N. L. PARR and E. R. W. MAY, *Proe. Brit. Ceram. Soc.* 7 (1967) 81.
- 13. S. M. BOYER and A. J. MOULSON, *J. Mater. Sci.* 13 (1978) 1637.
- 14. F. PORZ, R. STAHL and F. THUMMLER, *Powder Metallurgy International* 11 (1979) 133.
- 15. H. M. JENNINGS and M. H. RICHMAN, *J. Mater. Sci.* 11 (1976) 2078.
- 16. S. K. BISWAS and J. MUKERJI, J. Amer. Ceram. *Soc.* 63 (1980) 232.

Received 21 December 1979 and accepted 8 May 1980.